
Math 31 – Homework 5

Due Friday, August 2

Note: Any problem labeled as “show” or “prove” should be written up as a formal proof, using
complete sentences to convey your ideas.

Easier

1. Determine if each mapping is a homomorphism. State why or why not. If it is a homomorphism,
find its kernel, and determine whether it is one-to-one and onto.

(a) Define ϕ : Z→ R by ϕ(n) = n. (Both are groups under addition here.)

(b) Let G be a group, and define ϕ : G→ G by ϕ(a) = a−1 for all a ∈ G.

(c) Let G be an abelian group, and define ϕ : G→ G by ϕ(a) = a−1 for all a ∈ G.

(d) Let G be a group, and define ϕ : G→ G by ϕ(a) = a2 for all a ∈ G.

2. Consider the subgroup H = {i,m1} of the dihedral group D3. Find all the left cosets of H,
and then find all of the right cosets of H. Observe that the left and right cosets do not coincide.

3. Find the cycle decomposition and order of each of the following permutations.

(a)

(
1 2 3 4 5 6 7 8 9
3 1 4 2 7 6 9 8 5

)

(b)

(
1 2 3 4 5 6 7
7 6 5 4 3 2 1

)

(c)

(
1 2 3 4 5 6 7
7 6 5 3 4 2 1

)(
1 2 3 4 5 6 7
2 3 1 5 6 7 4

)
4. Determine whether each permutation is even or odd.

(a)

(
1 2 3 4 5 6 7 8 9
2 4 5 1 3 7 8 9 6

)
(b) (1 2 3 4 5 6)(7 8 9)

(c) (1 2 3 4 5 6)(1 2 3 4 5 7)

(d) (1 2)(1 2 3)(4 5)(5 6 8)(1 7 9)

5. Let G and G′ be groups, and suppose that |G| = p for some prime number p. Show that
any group homomorphism ϕ : G → G′ must either be the trivial homomorphism or a one-to-one
homomorphism.
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Medium

6. [Saracino, #12.13 modified] Let ϕ : G→ G′ be a group homomorphism. If G is abelian and ϕ
is onto, prove that G′ is abelian.

7. [Saracino, #12.3 and 12.20 modified] Let G be an abelian group, n a positive integer, and
define ϕ : G→ G by ϕ(x) = xn.

(a) Show that ϕ is a homomorphism.

(b) Suppose that G is a finite group and that n is relatively prime to |G|. Show that ϕ is an
automorphism of G.

8. [Saracino, #12.33 modified] Let V4 = {e, a, b, c} denote the Klein 4-group. Since |V4| = 4,
Cayley’s theorem tells us that V4 is isomorphic to a subgroup of S4. In this problem you will apply
techniques from the proof of the theorem to this specific example in order to determine which
subgroup of S4 is matched up to V4.

Suppose we label the elements of the Klein 4-group using the numbers 1 through 4, in the
following manner:

e a b c

1 2 3 4

Now multiply every element by a in order, i.e.,

e a b c

1 2 3 4

a e c b

2 1 4 3

Then multiplication by a determines a permutation of V4 (by the proof of Cayley’s theorem). This
corresponds to an element of S4 via the labels that we have given the elements of V4. Do this
for every element x of V4. That is, write down the permutation in S4 (in cycle notation) that is
obtained by multiplying every element of V4 by x.

Hard

9. [Saracino, #10.32 modified] Let G be a group with identity element e, and let X be a set. A
(left) action of G on X is a function G×X → X, usually denoted by

(g, x) 7→ g · x

for g ∈ G and x ∈ X, satisfying:

1. g1 · (g2 · x) = (g1g2) · x for all g1, g2 ∈ G and all x ∈ X.

2. e · x = x for all x ∈ X.
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Intuitively, a group action assigns a permutation of X to each group element. (You will explore
this idea in part (d) below.)

Finally, there are two important objects that are affiliated to any group action. For any x ∈ X,
the orbit of x under G is the subset

orb(x) = {g · x : g ∈ G}

of X, and the stabilizer of x is the subset

Gx = {g ∈ G : g · x = x}

of G.

(a) (Warm up.) We have already seen that it is possible to view the elements of the dihedral
group D3 as permutations of the vertices of a triangle, labeled as below:

1 2

3

Thus D3 acts on the set X = {1, 2, 3} of vertices by permuting them. Determine the orbit
and stabilizer of each vertex under this action.

(b) (Another example.) Let G be a group, let X = G, and define a map G×X → G by

(g, x) 7→ g · x = gx

for all g ∈ G and x ∈ X, i.e., the product of g and x as elements of G. Verify that this defines
a group action of G on itself. (This action is called left translation.) Given x ∈ X = G,
what are orb(x) and Gx?

(c) Prove that for every x ∈ X, the stabilizer Gx is a subgroup of G.

(d) Given a fixed g ∈ G, define a function σg : X → X by

σg(x) = g · x.

Show that σg is bijective, so σg defines a permutation of X. [Compare this to the proof of
Cayley’s theorem.]

(e) Recall that SX denotes the group of permutations of X under composition. Define a function
ϕ : G→ SX by

ϕ(g) = σg

for all g ∈ G. Prove that ϕ is a homomorphism. [Note: The proof of Cayley’s theorem is a
special case of this phenomenon, with G acting on itself by left translation.]

Parts (d) and (e) above show that a group action gives an alternative way of viewing a group as
a collection of symmetries (or permutations) of some object. Cayley’s theorem provides a specific
example, where a group is viewed as a collection of permutations of itself. Group actions provide
one of the most interesting ways in which groups are used in practice.
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