Math 31 - Homework 5

Due Friday, August 2

Note: Any problem labeled as "show" or "prove" should be written up as a formal proof, using complete sentences to convey your ideas.

Easier

1. Determine if each mapping is a homomorphism. State why or why not. If it is a homomorphism, find its kernel, and determine whether it is one-to-one and onto.
(a) Define $\varphi: \mathbb{Z} \rightarrow \mathbb{R}$ by $\varphi(n)=n$. (Both are groups under addition here.)
(b) Let G be a group, and define $\varphi: G \rightarrow G$ by $\varphi(a)=a^{-1}$ for all $a \in G$.
(c) Let G be an abelian group, and define $\varphi: G \rightarrow G$ by $\varphi(a)=a^{-1}$ for all $a \in G$.
(d) Let G be a group, and define $\varphi: G \rightarrow G$ by $\varphi(a)=a^{2}$ for all $a \in G$.
2. Consider the subgroup $H=\left\{i, m_{1}\right\}$ of the dihedral group D_{3}. Find all the left cosets of H, and then find all of the right cosets of H. Observe that the left and right cosets do not coincide.
3. Find the cycle decomposition and order of each of the following permutations.
(a) $\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 1 & 4 & 2 & 7 & 6 & 9 & 8 & 5\end{array}\right)$
(b) $\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 6 & 5 & 4 & 3 & 2 & 1\end{array}\right)$
(c) $\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 6 & 5 & 3 & 4 & 2 & 1\end{array}\right)\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 1 & 5 & 6 & 7 & 4\end{array}\right)$
4. Determine whether each permutation is even or odd.
(a) $\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 4 & 5 & 1 & 3 & 7 & 8 & 9 & 6\end{array}\right)$
(b) $(123456)(789)$
(c) $(123456)(123457)$
(d) $\left(\begin{array}{ll}1 & 2)(123)(45)(568)(179)\end{array}\right.$
5. Let G and G^{\prime} be groups, and suppose that $|G|=p$ for some prime number p. Show that any group homomorphism $\varphi: G \rightarrow G^{\prime}$ must either be the trivial homomorphism or a one-to-one homomorphism.

Medium

6. [Saracino, \#12.13 modified] Let $\varphi: G \rightarrow G^{\prime}$ be a group homomorphism. If G is abelian and φ is onto, prove that G^{\prime} is abelian.
7. [Saracino, \#12.3 and 12.20 modified] Let G be an abelian group, n a positive integer, and define $\varphi: G \rightarrow G$ by $\varphi(x)=x^{n}$.
(a) Show that φ is a homomorphism.
(b) Suppose that G is a finite group and that n is relatively prime to $|G|$. Show that φ is an automorphism of G.
8. [Saracino, \#12.33 modified] Let $V_{4}=\{e, a, b, c\}$ denote the Klein 4-group. Since $\left|V_{4}\right|=4$, Cayley's theorem tells us that V_{4} is isomorphic to a subgroup of S_{4}. In this problem you will apply techniques from the proof of the theorem to this specific example in order to determine which subgroup of S_{4} is matched up to V_{4}.

Suppose we label the elements of the Klein 4-group using the numbers 1 through 4, in the following manner:

$$
\begin{array}{cccc}
e & a & b & c \\
1 & 2 & 3 & 4
\end{array}
$$

Now multiply every element by a in order, i.e.,

$$
\begin{array}{llll}
e & a & b & c \\
1 & 2 & 3 & 4
\end{array} \longrightarrow \quad \begin{array}{llll}
a & e & c & b \\
2 & 1 & 4 & 3
\end{array}
$$

Then multiplication by a determines a permutation of V_{4} (by the proof of Cayley's theorem). This corresponds to an element of S_{4} via the labels that we have given the elements of V_{4}. Do this for every element x of V_{4}. That is, write down the permutation in S_{4} (in cycle notation) that is obtained by multiplying every element of V_{4} by x.

Hard

9. [Saracino, \#10.32 modified] Let G be a group with identity element e, and let X be a set. A (left) action of G on X is a function $G \times X \rightarrow X$, usually denoted by

$$
(g, x) \mapsto g \cdot x
$$

for $g \in G$ and $x \in X$, satisfying:

1. $g_{1} \cdot\left(g_{2} \cdot x\right)=\left(g_{1} g_{2}\right) \cdot x$ for all $g_{1}, g_{2} \in G$ and all $x \in X$.
2. $e \cdot x=x$ for all $x \in X$.

Intuitively, a group action assigns a permutation of X to each group element. (You will explore this idea in part (d) below.)

Finally, there are two important objects that are affiliated to any group action. For any $x \in X$, the orbit of x under G is the subset

$$
\operatorname{orb}(x)=\{g \cdot x: g \in G\}
$$

of X, and the stabilizer of x is the subset

$$
G_{x}=\{g \in G: g \cdot x=x\}
$$

of G.
(a) (Warm up.) We have already seen that it is possible to view the elements of the dihedral group D_{3} as permutations of the vertices of a triangle, labeled as below:

Thus D_{3} acts on the set $X=\{1,2,3\}$ of vertices by permuting them. Determine the orbit and stabilizer of each vertex under this action.
(b) (Another example.) Let G be a group, let $X=G$, and define a map $G \times X \rightarrow G$ by

$$
(g, x) \mapsto g \cdot x=g x
$$

for all $g \in G$ and $x \in X$, i.e., the product of g and x as elements of G. Verify that this defines a group action of G on itself. (This action is called left translation.) Given $x \in X=G$, what are $\operatorname{orb}(x)$ and G_{x} ?
(c) Prove that for every $x \in X$, the stabilizer G_{x} is a subgroup of G.
(d) Given a fixed $g \in G$, define a function $\sigma_{g}: X \rightarrow X$ by

$$
\sigma_{g}(x)=g \cdot x
$$

Show that σ_{g} is bijective, so σ_{g} defines a permutation of X. [Compare this to the proof of Cayley's theorem.]
(e) Recall that S_{X} denotes the group of permutations of X under composition. Define a function $\varphi: G \rightarrow S_{X}$ by

$$
\varphi(g)=\sigma_{g}
$$

for all $g \in G$. Prove that φ is a homomorphism. [Note: The proof of Cayley's theorem is a special case of this phenomenon, with G acting on itself by left translation.]

Parts (d) and (e) above show that a group action gives an alternative way of viewing a group as a collection of symmetries (or permutations) of some object. Cayley's theorem provides a specific example, where a group is viewed as a collection of permutations of itself. Group actions provide one of the most interesting ways in which groups are used in practice.

